Username: Password:
Computer Vision And Pattern Analysis Laboratory Home Page  Home
People  People
Publications  Publications
Publications  Databases
Contact Information  Contact
Supported Research Projects  Supported Research Projects
Research Activites  Research Activites
Research Groups
SPIS - Signal Processing and Information Systems Lab.SPIS - Signal Processing and Information Systems Lab.
Medical Vision and Analysis Group  Medical Research Activities
Biometrics Research Group  Biometrics Research Group
SPIS - Signal Processing and Information Systems Lab.MISAM - Machine Intelligence for Speech Audio and Multimedia.
Knowledge Base
  Paper Library
  VPA Lab Inventory
  Databases in VPALAB
<<September 2017>>
Mo Tu We Th Fr Sa Su
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30
Upcoming Events:

Defect Detection in Textile Fabric Images Using Subband Domain Subspace Analysis
Authors: A. Serdaroglu, A. Ertuzun, and A. Ercil
Published in: Pattern Recognition and Image Analysis, 2007, Vol. 17, No. 4, pp. 663–674.
Publication year: 2007
Abstract: Abstract—In this work, a new model that combines the concepts of wavelet transformation and subspace analysis tools, like independent component analysis (ICA), topographic independent component analysis (TICA), and Independent Subspace Analysis (ISA), is developed for the purpose of defect detection in textile images. In previous works, it has been shown that reduction of the textural components of the textile image by preprocessing has increased the performance of the system. Based on this observation, in the present work, the aforementioned subspace analysis tools are applied to subband images. The feature vector of a subwindow of a test image is compared with that of a defect-free image in order to make a decision. This decision is based on a Euclidean distance classifier. The increase performance that results from using wavelet transformation prior to subspace analysis has been discussed in detail. While it has been found that all subspace analysis methods lead to the same detection performances, as a further step, independent subspace analysis is used to classify the detected defects according to their directionalities.
  download full paper

Home Back