Username: Password:
Computer Vision And Pattern Analysis Laboratory Home Page  Home
People  People
Publications  Publications
Publications  Databases
Contact Information  Contact
Supported Research Projects  Supported Research Projects
Research Activites  Research Activites
Research Groups
SPIS - Signal Processing and Information Systems Lab.SPIS - Signal Processing and Information Systems Lab.
Medical Vision and Analysis Group  Medical Research Activities
Biometrics Research Group  Biometrics Research Group
SPIS - Signal Processing and Information Systems Lab.MISAM - Machine Intelligence for Speech Audio and Multimedia.
Knowledge Base
  Paper Library
  VPA Lab Inventory
  Databases in VPALAB
<<September 2017>>
Mo Tu We Th Fr Sa Su
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30
Upcoming Events:

Stent implant follow-up in intravascular optical coherence tomography images
Authors: G. Unal, S. Gurmeric, S.G. Carlier
Published in: The International Journal of Cardiovascular Imaging, Published online first, DOI: 10.1007/s10554-009-9508-4
Publication year: 2009
Abstract: The objectives of this article are (i) to utilize computer methods in detection of stent struts imaged in vivo by optical coherence tomography (OCT) during percutaneous coronary interventions (PCI); (ii) to provide measurements for the assessment and monitoring of in-stent restenosis by OCT post PCI. Thirty-nine OCT cross-sections from seven pullbacks from seven patients presenting varying degrees of neointimal hyperplasia (NIH) are selected, and stent struts are detected. Stent and lumen boundaries are reconstructed and one experienced observer analyzed the strut detection, the lumen and stent area measurements, as well as the NIH thickness in comparison to manual tracing using the reviewing software provided by the OCT manufacturer (LightLab Imaging, MA, USA). Very good agreements were found between the computer methods and the expert evaluations for lumen cross-section area (mean difference = 0.11 ± 0.70 mm2; r2 = 0.98, P < 0.0001) and the stent cross-section area (mean difference = 0.10 ± 1.28 mm2; r2 = 0.85, P value < 0.0001). The average number of detected struts was 10.4 ± 2.9 per cross-section when the expert identified 10.5 ± 2.8 (r2 = 0.78, P value < 0.0001). For the given patient dataset: lumen cross-sectional area was on the average (6.05 ± 1.87 mm2), stent cross-sectional area was (6.26 ± 1.63 mm2), maximum angle between struts was on the average (85.96 ± 54.23°), maximum, average, and minimum distance between the stent and the lumen were (0.18 ± 0.13 mm), (0.08 ± 0.06 mm), and (0.01 ± 0.02 mm), respectively, and stent eccentricity was (0.80 ± 0.08). Low variability between the expert and automatic method was observed in the computations of the most important parameters assessing the degree of neointimal tissue growth in stents imaged by OCT pullbacks. After further extensive validation, the presented methods might offer a robust automated tool that will improve the evaluation and follow-up monitoring of in-stent restenosis in patients.
  download full paper

Home Back