The authors present a planar shape recognition approach based on the hidden Markov model and autoregressive parameters. This approach segments closed shapes to make classifications at a finer level. The algorithm can tolerate a lot of shape contour perturbation and a moderate amount of occlusion. An orientation scheme is described to make the overall classification insensitive to shape orientation. Excellent recognition results have been reported. A distinct advantage of the approach is that the classifier does not have to be trained again when a new class of shapes is added.
type
Journal
journal
IEEE transactions on pattern analysis and machine intelligence