Menu 
VPA
Computer Vision And Pattern Analysis Laboratory Home Page  Home
People  People
Publications  Publications
Publications  Databases
Contact Information  Contact
Research
Supported Research Projects  Supported Research Projects
Research Activites  Research Activites
Research Groups
SPIS - Signal Processing and Information Systems Lab.SPIS - Signal Processing and Information Systems Lab.
Medical Vision and Analysis Group  Medical Research Activities
Biometrics Research Group  Biometrics Research Group
SPIS - Signal Processing and Information Systems Lab.MISAM - Machine Intelligence for Speech Audio and Multimedia.
Knowledge Base
  Paper Library
  VPA Lab Inventory
  Databases in VPALAB
Improved post-processing for GMM based adaptive background modeling
Authors: Turdu, D., and Erdogan, H.
Published in: Computer and Information Sciences, 2007. ISCIS 2007
Publication year: 2007
Abstract: n this paper, we propose a new post-processing method for Gaussian mixture model (GMM) based adaptive background modeling which was proposed by Stauffer and Grimson. This is a ubiquitous and successful background modeling method. A drawback of this method is that it assumes independence of pixels and relies solely on the difference between current pixel value and its past values. This causes some errors within the foreground region and results in fragmentation of foreground objects detected. Our method uses relaxed- thresholding and adds foreground edge information in close proximity of detected foreground blobs. The close proximity is obtained as the union of convex hulls of close-by regions which we call the hysteresis region. Our results show that we can achieve increased recall rate with the proposed method without much decreasing the precision of the conventional method.
  download full paper
Download

Home Back