Menu 
VPA
Computer Vision And Pattern Analysis Laboratory Home Page  Home
People  People
Publications  Publications
Publications  Databases
Contact Information  Contact
Research
Supported Research Projects  Supported Research Projects
Research Activites  Research Activites
Research Groups
SPIS - Signal Processing and Information Systems Lab.SPIS - Signal Processing and Information Systems Lab.
Medical Vision and Analysis Group  Medical Research Activities
Biometrics Research Group  Biometrics Research Group
SPIS - Signal Processing and Information Systems Lab.MISAM - Machine Intelligence for Speech Audio and Multimedia.
Knowledge Base
  Paper Library
  VPA Lab Inventory
  Databases in VPALAB
Joint space aspect reconstruction of wide-angle SAR exploiting sparsity
Authors: Ivana Stojanovic, Müjdat Çetin, and W. Clem Karl
Published in: DSS08 - SPIE Defense and Security Symposium, Algorithms for Synthetic Aperture Radar Imagery XV
Publication year: 2008
Abstract: In this paper we present an algorithm for wide-angle synthetic aperture radar (SAR) image formation. Reconstruction of wide-angle SAR holds a promise of higher resolution and better information about a scene, but it also poses a number of challenges when compared to the traditional narrow-angle SAR. Most prominently, the isotropic point scattering model is no longer valid. We present an algorithm capable of producing high resolution reflectivity maps in both space and aspect, thus accounting for the anisotropic scattering behavior of targets. We pose the problem as a non-parametric three-dimensional inversion problem, with two constraints: magnitudes of the backscattered power are highly correlated across closely spaced look angles and the backscattered power originates from a small set of point scatterers. This approach considers jointly all scatterers in the scene across all azimuths, and exploits the sparsity of the underlying scattering field. We implement the algorithm and present reconstruction results on realistic data obtained from the XPatch Backhoe dataset.
  download full paper
Download

Home Back