Computer Vision And Pattern Analysis Laboratory Home Page  Home
People  People
Publications  Publications
Publications  Databases
Contact Information  Contact
Supported Research Projects  Supported Research Projects
Research Activites  Research Activites
Research Groups
SPIS - Signal Processing and Information Systems Lab.SPIS - Signal Processing and Information Systems Lab.
Medical Vision and Analysis Group  Medical Research Activities
Biometrics Research Group  Biometrics Research Group
SPIS - Signal Processing and Information Systems Lab.MISAM - Machine Intelligence for Speech Audio and Multimedia.
Knowledge Base
  Paper Library
Hyper-parameter Selection in Non-quadratic Regularization-based Radar Image Formation
Authors: Ozge Batu and Müjdat Çetin
Published in: DSS08 - SPIE Defense and Security Symposium, Algorithms for Synthetic Aperture Radar Imagery XV
Publication year: 2008
Abstract: We consider the problem of automatic parameter selection in regularization-based radar image formation techniques. It has previously been shown that non-quadratic regularization produces feature-enhanced radar images; can yield superresolution; is robust to uncertain or limited data; and can generate enhanced images in non-conventional data collection scenarios such as sparse aperture imaging. However, this regularized imaging framework involves some hyper-parameters, whose choice is crucial because that directly affects the characteristics of the reconstruction. Hence there is interest in developing methods for automatic parameter choice. We investigate Stein’s unbiased risk estimator (SURE) and generalized cross-validation (GCV) for automatic selection of hyper-parameters in regularized radar imaging. We present experimental results based on the Air Force Research Laboratory (AFRL) "Backhoe Data Dome," to demonstrate and discuss the effectiveness of these methods.
  download full paper

Home Back