Menu 
VPA
Computer Vision And Pattern Analysis Laboratory Home Page  Home
People  People
Publications  Publications
Publications  Databases
Contact Information  Contact
Research
Supported Research Projects  Supported Research Projects
Research Activites  Research Activites
Research Groups
SPIS - Signal Processing and Information Systems Lab.SPIS - Signal Processing and Information Systems Lab.
Medical Vision and Analysis Group  Medical Research Activities
Biometrics Research Group  Biometrics Research Group
SPIS - Signal Processing and Information Systems Lab.MISAM - Machine Intelligence for Speech Audio and Multimedia.
Knowledge Base
  Paper Library
  VPA Lab Inventory
  Databases in VPALAB
A Robust Facial Feature Point Tracker using Graphical Models
Authors: Serhan Cosar, Müjdat Çetin, and Aytül Erçil
Published in: ISPA2007 - IEEE International Symposium on Image and Signal Processing and Analysis
Publication year: 2007
Abstract: In recent years, facial feature point tracking becomes a research area that is used in human-computer interaction (HCI), facial expression analysis, etc. In this paper, a statistical method for facial feature point tracking is proposed. Feature point tracking is a challenging topic in scenarios involving arbitrary head movements and uncertain data because of noise and/or occlusions. As a natural human action, people move their heads or occlude their faces with their hands or fingers. With this motivation, a graphical model that uses temporal information about feature point movements as well as the spatial relationships between such points, which is updated in time to deal with different head pose variations, is built. Based on this model, an algorithm that achieves feature point tracking through a video observation sequence is implemented. Also, an occlusion detector is proposed to automatically detect occluded points. The proposed method is applied on 2D gray scale video sequences consisting head movements and occlusions and the superiority of this approach over existing techniques is demonstrated.
  download full paper
Download

Home Back