Computer Vision And Pattern Analysis Laboratory Home Page  Home
People  People
Publications  Publications
Publications  Databases
Contact Information  Contact
Supported Research Projects  Supported Research Projects
Research Activites  Research Activites
Research Groups
SPIS - Signal Processing and Information Systems Lab.SPIS - Signal Processing and Information Systems Lab.
Medical Vision and Analysis Group  Medical Research Activities
Biometrics Research Group  Biometrics Research Group
SPIS - Signal Processing and Information Systems Lab.MISAM - Machine Intelligence for Speech Audio and Multimedia.
Knowledge Base
  Paper Library
Learning the Dynamics and Time-Recursive Boundary Detection of Deformable Objects
Authors: Walter Sun, Müjdat Çetin, Raymond Chan, and Alan S. Willsky
Published in: IEEE Trans. Image Processing, vol. 17, no. 11, pp. 2186-2200, November 2008
Publication year: 2008
Abstract: We propose a principled framework for recursively segmenting deformable objects across a sequence of frames. We demonstrate the usefulness of this method on left ventricular segmentation across a cardiac cycle. The approach involves a technique for learning the system dynamics together with methods of particle-based smoothing as well as nonparametric belief propagation on a loopy graphicalmodel capturing the temporal periodicity of the heart. The dynamic system state is a low-dimensional representation of the boundary, and the boundary estimation involves incorporating curve evolution into recursive state estimation. By formulating the problem as one of state estimation, the segmentation at each particular time is based not only on the data observed at that instant, but also on predictions based on past and future boundary estimates. Although this paper focuses on left ventricle segmentation, the method generalizes to temporally segmenting any deformable object.
  download full paper

Home Back