Computer Vision And Pattern Analysis Laboratory Home Page  Home
People  People
Publications  Publications
Publications  Databases
Contact Information  Contact
Supported Research Projects  Supported Research Projects
Research Activites  Research Activites
Research Groups
SPIS - Signal Processing and Information Systems Lab.SPIS - Signal Processing and Information Systems Lab.
Medical Vision and Analysis Group  Medical Research Activities
Biometrics Research Group  Biometrics Research Group
SPIS - Signal Processing and Information Systems Lab.MISAM - Machine Intelligence for Speech Audio and Multimedia.
Knowledge Base
  Paper Library
A Comparison on Features Efficiency in Automatic Reconstruction of Archeological Broken Objects
Authors: Diana Florentina Soldea, Octavian Soldea, Gozde Unal, Aytul Ercil
Published in: VAST 2008 - The 9th VAST International Symposium on Virtual Reality, Archaeology and Cultural Heritage
Publication year: 2008
Abstract: Automatic reconstruction of archeological broken objects is an invaluable tool for restoration purposes and personnel. In this paper, we assume that broken pieces have similar characteristics on their common boundaries, when they are correctly combined. In this paper we work in a framework for the full reconstruction of the original objects using texture and surface design information on the sherd. The texture of a band outside the border of pieces is predicted by inpainting and texture synthesis methods. Feature values are derived from these original and predicted images of pieces. We present a quantitative and qualitative comparison over a large set of features and over a large set of synthetic and real archeological broken objects.
  download full paper

Home Back