Menu 
VPA
Computer Vision And Pattern Analysis Laboratory Home Page  Home
People  People
Publications  Publications
Publications  Databases
Contact Information  Contact
Research
Supported Research Projects  Supported Research Projects
Research Activites  Research Activites
Research Groups
SPIS - Signal Processing and Information Systems Lab.SPIS - Signal Processing and Information Systems Lab.
Medical Vision and Analysis Group  Medical Research Activities
Biometrics Research Group  Biometrics Research Group
SPIS - Signal Processing and Information Systems Lab.MISAM - Machine Intelligence for Speech Audio and Multimedia.
Knowledge Base
  Paper Library
  VPA Lab Inventory
  Databases in VPALAB
Multiple Feature-Enhanced Synthetic Aperture Radar Imaging
Authors: Sadegh Samadi, Müjdat Çetin, Mohammad Ali Masnadi-Shirazi
Published in: SPIE Defense and Security Symposium, Algorithms for Synthetic Aperture Radar Imagery XVI, E. G. Zelnio and F. D. Garber, Eds., Orlando, Florida, April 2009
Publication year: 2009
Abstract: Non-quadratic regularization based image formation is a recently proposed framework for feature-enhanced radar imaging. Specific image formation techniques in this framework have so far focused on enhancing one type of feature, such as strong point scatterers, or smooth regions. However, many scenes contain a number of such features. We develop an image formation technique that simultaneously enhances multiple types of features by posing the problem as one of sparse signal representation based on overcomplete dictionaries. Due to the complex-valued nature of the reflectivities in SAR, our new approach is designed to sparsely represent the magnitude of the complex-valued scattered field in terms of multiple features, which turns the image reconstruction problem into a joint optimization problem over the representation of the magnitude and the phase of the underlying field reflectivities. We formulate the mathematical framework needed for this method and propose an iterative solution for the corresponding joint optimization problem. We demonstrate the effectiveness of this approach on various SAR images.
  download full paper
Download

Home Back