Computer Vision And Pattern Analysis Laboratory Home Page  Home
People  People
Publications  Publications
Publications  Databases
Contact Information  Contact
Supported Research Projects  Supported Research Projects
Research Activites  Research Activites
Research Groups
SPIS - Signal Processing and Information Systems Lab.SPIS - Signal Processing and Information Systems Lab.
Medical Vision and Analysis Group  Medical Research Activities
Biometrics Research Group  Biometrics Research Group
SPIS - Signal Processing and Information Systems Lab.MISAM - Machine Intelligence for Speech Audio and Multimedia.
Knowledge Base
  Paper Library
SAR Moving Target Imaging in a Sparsity-driven Framework
Authors: Ozben Onhon, Müjdat Çetin
Published in: SPIE Optics + Photonics Symposium, Wavelets and Sparsity XIV Conference, San Diego, California, USA, August 2011
Publication year: 2011
Abstract: In synthetic aperture radar (SAR) imaging, sparsity-driven imaging techniques have been shown to provide high resolution images with reduced sidelobes and reduced speckle, by allowing the incorporation of prior information about the scene into the problem. Just like many common SAR imaging methods, these techniques also assume the targets in the scene are stationary over the data collection interval. Here, we consider the problem of imaging in the presence of targets with unknown motion in the scene. Moving targets cause phase errors in the SAR data and these errors lead to defocusing in the corresponding spatial region in the reconstructed image. We view phase errors resulting from target motion as errors on the observation model of a static scene. Based on these observations we propose a method which not only benefits from the advantages of sparsity-driven imaging but also compansates the errors arising due to the moving targets. Considering that in SAR imaging the underlying scene usually admits a sparse representation, a nonquadratic regularization-based framework is used. The proposed method is based on minimization of a cost function which involves regularization terms imposing sparsity on the reflectivity field to be imaged, as well as on the spatial structure of the motion-related phase errors, reflecting the assumption that only a small percentage of the entire scene contains moving targets. Experimental results demonstrate the effectiveness of the proposed approach in reconstructing focused images of scenes containing multiple targets with unknown motion.
  download full paper

Home Back