Computer Vision And Pattern Analysis Laboratory Home Page  Home
People  People
Publications  Publications
Publications  Databases
Contact Information  Contact
Supported Research Projects  Supported Research Projects
Research Activites  Research Activites
Research Groups
SPIS - Signal Processing and Information Systems Lab.SPIS - Signal Processing and Information Systems Lab.
Medical Vision and Analysis Group  Medical Research Activities
Biometrics Research Group  Biometrics Research Group
SPIS - Signal Processing and Information Systems Lab.MISAM - Machine Intelligence for Speech Audio and Multimedia.
Knowledge Base
  Paper Library
Discrimination of Moderate and Acute Drowsiness Based on Spontaneous Facial Expressions
Authors: Esra Vural, Marian Bartlett, Gwen Littlewort, Müjdat Çetin, Aytül Erçil, Javier Movellan
Published in: International Conference on Pattern Recognition, Istanbul, Turkey, August 2010
Publication year: 2010
Abstract: It is important for drowsiness detection systems to identify different levels of drowsiness and respond appropriately at each level. This study explores how to discriminate moderate from acute drowsiness by applying computer vision techniques to the human face. In our previous study, spontaneous facial expressions measured through computer vision techniques were used as an indicator to discriminate alert from acutely drowsy episodes. In this study we are exploring which facial muscle movements are predictive of moderate and acute drowsiness. The effect of temporal dynamics of action units on prediction performances is explored by capturing temporal dynamics using an overcomplete representation of temporal Gabor Filters. In the final system we perform feature selection to build a classifier that can discriminate moderate drowsy from acute drowsy episodes. The system achieves a classification rate of .96 A’ in discriminating moderately drowsy versus acutely drowsy episodes. Moreover the study reveals new information in facial behavior occurring during different stages of drowsiness.
  download full paper

Home Back