Menu 
VPA
Computer Vision And Pattern Analysis Laboratory Home Page  Home
People  People
Publications  Publications
Publications  Databases
Contact Information  Contact
Research
Supported Research Projects  Supported Research Projects
Research Activites  Research Activites
Research Groups
SPIS - Signal Processing and Information Systems Lab.SPIS - Signal Processing and Information Systems Lab.
Medical Vision and Analysis Group  Medical Research Activities
Biometrics Research Group  Biometrics Research Group
SPIS - Signal Processing and Information Systems Lab.MISAM - Machine Intelligence for Speech Audio and Multimedia.
Knowledge Base
  Paper Library
  VPA Lab Inventory
  Databases in VPALAB
A Brain-Computer Interface Algorithm based on Hidden Markov Models and Dimensionality Reduction
Authors: Ali Ozgur Argunsah, Müjdat Çetin
Published in: IEEE Conference on Signal Processing, Communications, and their Applications, Diyarbakir, Turkey, April 2010 (in Turkish)
Publication year: 2010
Abstract: We consider the problem of motor imagery EEG data classification within the context of brain-computer interfaces. We propose an approach based on Hidden Markov models (HMMs). Our approach is different from existing HMM-based techniques in that it uses features based on autoregressive parameters together with dimensionality reduction based on principal component analysis (PCA). We demonstrate the effectiveness of our approach through experimental results for two and four-class problems based on a public dataset, as well as data collected in our laboratory.
  download full paper
Download

Home Back