Computer Vision And Pattern Analysis Laboratory Home Page  Home
People  People
Publications  Publications
Publications  Databases
Contact Information  Contact
Supported Research Projects  Supported Research Projects
Research Activites  Research Activites
Research Groups
SPIS - Signal Processing and Information Systems Lab.SPIS - Signal Processing and Information Systems Lab.
Medical Vision and Analysis Group  Medical Research Activities
Biometrics Research Group  Biometrics Research Group
SPIS - Signal Processing and Information Systems Lab.MISAM - Machine Intelligence for Speech Audio and Multimedia.
Knowledge Base
  Paper Library
Compressed sensing of mono-static and multi-static SAR
Authors: Ivana Stojanovic, W. Clem Karl, Müjdat Çetin
Published in: SPIE Defense and Security Symposium, Algorithms for Synthetic Aperture Radar Imagery XVI, E. G. Zelnio and F. D. Garber, Eds., Orlando, Florida, April 2009
Publication year: 2009
Abstract: In this paper we study the impact of sparse aperture data collection of a SAR sensor on reconstruction quality of a scene of interest. Different mono and multi-static SAR measurement configurations produce different Fourier sampling patterns. These patterns reflect different spectral and spatial diversity trade-offs that must be made during task planning. Compressed sensing theory argues that the mutual coherence of the measurement probes is related to the reconstruction performance of sparse domains. With this motivation we compare the mutual coherence and corresponding reconstruction behavior of various mono-static and ultra-narrow band multi-static configurations, which trade-off frequency for geometric diversity. We investigate if such simple metrics are related to SAR reconstruction quality in an obvious way.
  download full paper

Home Back