Menu 
VPA
Computer Vision And Pattern Analysis Laboratory Home Page  Home
People  People
Publications  Publications
Publications  Databases
Contact Information  Contact
Research
Supported Research Projects  Supported Research Projects
Research Activites  Research Activites
Research Groups
SPIS - Signal Processing and Information Systems Lab.SPIS - Signal Processing and Information Systems Lab.
Medical Vision and Analysis Group  Medical Research Activities
Biometrics Research Group  Biometrics Research Group
SPIS - Signal Processing and Information Systems Lab.MISAM - Machine Intelligence for Speech Audio and Multimedia.
Knowledge Base
  Paper Library
  VPA Lab Inventory
  Databases in VPALAB
A Sobolev-type Metric for Polar Active Contours
Authors: M. Baust, A.J. Yezzi, G. Unal, N. Navab
Published in: IEEE Conf. on Computer Vision and Pattern Recognition, CVPR 2011
Publication year: 2011
Abstract: Polar object representations have proven to be a powerful shape model for many medical as well as other computer vision applications, such as interactive image segmentation or tracking. Inspired by recent work on Sobolev active contours we derive a Sobolev-type function space for polar curves. This so-called polar space is endowed with a metric that allows us to favor origin translations and scale changes over smooth deformations of the curve. Moreover, the resulting curve flow inherits the coarse-to-fine behavior of Sobolev active contours and is thus very robust to local minima. These properties make the resulting polar active contours a powerful segmentation tool for many medical applications, such as cross-sectional vessel segmentation, aneurysm analysis, or cell tracking.
  download full paper
Download

Home Back