Computer Vision And Pattern Analysis Laboratory Home Page  Home
People  People
Publications  Publications
Publications  Databases
Contact Information  Contact
Supported Research Projects  Supported Research Projects
Research Activites  Research Activites
Research Groups
SPIS - Signal Processing and Information Systems Lab.SPIS - Signal Processing and Information Systems Lab.
Medical Vision and Analysis Group  Medical Research Activities
Biometrics Research Group  Biometrics Research Group
SPIS - Signal Processing and Information Systems Lab.MISAM - Machine Intelligence for Speech Audio and Multimedia.
Knowledge Base
  Paper Library
Sparsity-driven Ultrasound Imaging
Authors: Ahmet Tuysuzoglu, Jonathan M. Kracht, Müjdat Çetin, Robin Cleveland, W. Clem Karl
Published in: Journal of the Acoustical Society of America, vol. 131, no.2, pp. 1271-1281, February 2012.
Publication year: 2012
Abstract: An image formation framework for ultrasound imaging from synthetic transducer arrays based on sparsity-driven regularization functionals using single-frequency Fourier domain data is proposed. The framework involves the use of a physics-based forward model of the ultrasound observation process, the formulation of image formation as the solution of an associated optimization problem, and the solution of that problem through efficient numerical algorithms. The sparsity-driven, model-based approach estimates a complex-valued reflectivity field and preserves physical features in the scene while suppressing spurious artifacts. It also provides robust reconstructions in the case of sparse and reduced observation apertures. The effectiveness of the proposed imaging strategy is demonstrated using experimental data.
  download full paper

Home Back