Menu 
VPA
Computer Vision And Pattern Analysis Laboratory Home Page  Home
People  People
Publications  Publications
Publications  Databases
Contact Information  Contact
Research
Supported Research Projects  Supported Research Projects
Research Activites  Research Activites
Research Groups
SPIS - Signal Processing and Information Systems Lab.SPIS - Signal Processing and Information Systems Lab.
Medical Vision and Analysis Group  Medical Research Activities
Biometrics Research Group  Biometrics Research Group
SPIS - Signal Processing and Information Systems Lab.MISAM - Machine Intelligence for Speech Audio and Multimedia.
Knowledge Base
  Paper Library
  VPA Lab Inventory
  Databases in VPALAB
Three-dimensional scanning of specular and diffuse metallic surfaces using an infrared technique
Authors: Alban Bajard, Olivier Aubreton, Youssef Bokhabrine, Benjamin Verney, Gonen Eren, Aytul Ercil, Frederic Truchetet
Published in: Optical Engineering 2012 - Opt. Eng. 51, 063603 (2012), DOI:10.1117/1.OE.51.6.063603
Publication year: 2012
Abstract: Abstract. For the past two decades, the need for three-dimensional (3-D) scanning of industrial objects has increased significantly and many experimental techniques and commercial solutions have been proposed. However, difficulties remain for the acquisition of optically non-cooperative surfaces, such as transparent or specular surfaces. To address highly reflective metallic surfaces, we propose the extension of a technique that was originally dedicated to glass objects. In contrast to conventional active triangulation techniques that measure the reflection of visible radiation, we measure the thermal emission of a surface, which is locally heated by a laser source. Considering the thermophysical properties of metals, we present a simulation model of heat exchanges that are induced by the process, helping to demonstrate its feasibility on specular metallic surfaces and predicting the settings of the system. With our experimental device, we have validated the theoretical modeling and computed some 3-D point clouds from specular surfaces of various geometries. Furthermore, a comparison of our results with those of a conventional system on specular and diffuse parts will highlight that the accuracy of the measurement no longer depends on the roughness of the surface.
  download full paper
Download

Home Back